
BBoxDB - A Scalable Key-Bounding-Box-Value Store
for Multi-Dimensional Big Data

Jan Kristof Nidzwetzki and Ralf Hartmut Güting

Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Germany

BBoxDB

BBoxDB
A Key-Bounding-Box-Value Store

Key-Value Stores

Key-Value Stores . . .
I are a popular type of datastore.

I use a simple key-value data model.

I can be implemented as a distributed system for large amounts of data.

I provide at least the operations put(table, key, value) and
get(table, key).

I can not handle multi-dimensional data or non-point data well.

The Problem

{
"1234": {

"customer id":1234,

"firstname":"John",

"lastname":"Doe",

"email":"jd@domain.tld"

}
}

Key 1234

Figure: Determining the key for one-dimensional point data (e.g., a JSON encoded customer).

L
at

it
ud

e

Longitude

Key ?

Figure: Determining the key for two-dimensional non-point data (e.g., a road).

Our Solution

BBoxDB . . .

I is a key-bounding-box-value store.

I stores each value together with an axis-parallel bounding box.

I can handle n-dimensional point and non-point data.

I splits the space by using a space partitioner (e.g., K-D Tree, Quad-Tree).

I redistributes uneven data distributions dynamically in the background.

I provides a two-level index structure. The global index (space → nodes) is
stored in ZooKeeper and the local index (space → tuples) is stored on
each node. The local index is implemented by an R-Tree.

I stores data in string sorted tables (SSTables).

Multi-Dimensional Shards

Tuple H

Tuple G

Tuple A

Tuple B

Tuple C

Tuple D

Tuple E

Tuple F

Distribution

region 3

Distribution region 1

Distribution region 2 node c

node b

node a

Figure: The space is partitioned into distribution regions. Each tuple is stored together with
its bounding box. Tuples that belong to multiple regions are duplicated.

The Most Important Operations

I Create a distribution group:
createdgroup(group, dimensions, replicas, space

partitioner)

I Store new data:
put(table, key, hyperrectangle, value)

I Retrieve data:
getByHyperrectangle(table, hyperrectangle)

I Execute a spatial join:
join(table1, table2, hyperrectangle)

Spatial Joins on Co-Partitioned Data

I BBoxDB stores all tables of a distribution group co-partitioned.

I The data of these tables is distributed in the same manner.

I A spatial join can be executed without any data shuffling between nodes
only on locally stored data.

� ��

��

�

��

�

Longitude
Lat

itud
e

Relation: forests

��
�
�

�
Relation: roads

The join operation

Figure: Executing a spatial join on co-partitioned two-dimensional data.

The Graphical User Interface

Figure: The GUI of BBoxDB shows the cluster and the global index.

Figure: The global index visualized as Open Street Map overlay.

https://bboxdb.org/ http://dna.fernuni-hagen.de/ {jan.nidzwetzki@studium.,rhg@}fernuni-hagen.de


